Java mongodb 查询效率几种对比--效率优化。

使用mongodb 查数据库,那是真的慢呐。数据量小的时候,没感觉啥,数据量稍微大点。那速度贼感人。

下面是几种查询情况的对比。

1,使用Spring-data-mongodb。

2,使用游标查询

3,还是spring的

先是代码:

package com.xx.xxx.repository;

import com.xx.xxx.AbstractTest;
import com.xx.xxx.model.stream.Stream;
import com.google.common.collect.Lists;
import com.mongodb.BasicDBObject;
import com.mongodb.DBCursor;
import com.mongodb.DBObject;
import org.junit.Before;
import org.junit.Test;
import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.data.mongodb.core.query.Criteria;
import org.springframework.data.mongodb.core.query.Query;

import javax.annotation.Resource;
import java.util.List;

/**
 * 流测试
 *
 * @author LiXuekai on 2019/10/25
 */
public class StreamRepositoryTest extends AbstractTest {

    @Resource(name = "streamRepository")
    private StreamRepository dao;

    @Resource(name = "mongoTemplate")
    private MongoTemplate mongoTemplate;

    @Before
    public void test() {
        System.out.println("哈哈哈");
    }

    @Test
    public void countAll() {
        long count = dao.count();
        System.out.println(count);
    }

    @Test
    public void saveMuchMore() {
        List<Stream> allByName = dao.findAllByName("lxk-测试查询db性能");
        Stream stream = allByName.get(0);
        stream.setTitle("lxk-测试查询db性能");
        long index = 0;
        while (true) {
            stream.setId(null);
            dao.save(stream);
            index++;
            if (index > 10000) {
                break;
            }
        }
    }

    @Test
    public void findAllStreamsByType() {

        int stream_type = 0;
        long a = System.currentTimeMillis();
        List<Stream> allStreamsByType = dao.findAllStreamsByType(stream_type);
        System.out.println("dao.findAllStreamsByType(stream_type); 执行耗时 : " + (System.currentTimeMillis() - a) / 1000f + " 秒 ");
        System.out.println("spring db 查询耗时:" +allStreamsByType.size());


        a = System.currentTimeMillis();
        DBObject query1 = new BasicDBObject("stream_type", 0); //setup the query criteria 设置查询条件
        DBCursor dbCursor = mongoTemplate.getCollection("streams").find(query1);
        List<Stream> list = Lists.newArrayList();
        while (dbCursor.hasNext()) {
            DBObject object = dbCursor.next();
            Stream te = new Stream();
            te.setId(object.get("_id").toString());
            list.add(te);
        }
        System.out.println("执行耗时 : " + (System.currentTimeMillis() - a) / 1000f + " 秒 ");
        System.out.println("使用游标查询的耗时:" + list.size());

        a = System.currentTimeMillis();
        Query query = new Query();
        query.addCriteria(Criteria.where("stream_type").is(0));
        List<Stream> lists = mongoTemplate.find(query, Stream.class);
        System.out.println("执行耗时 : " + (System.currentTimeMillis() - a) / 1000f + " 秒 ");
        System.out.println("使用xxx查询的耗时:" + list.size());


    }
}

就是先往db中插入n条,然后,再测试下查询效率。为了全,我把import也给贴出来。

执行结果截图:

看的出来,查询的count和执行的时间。

debug的截图,游标查询,查出来的完全是个map的形式。在代码里面使用就不是那么友好了。

<span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构和算法的课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /><span style="color:#404040;">2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法:二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法、二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。</span>
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页